Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Many Gram-negative bacterial pathogens rely on the secretion system to inject effectors into their host cells, thereby suppressing host immunity and subsequently leading to diseases. In a recent Science paper, Miao et al. identified a plant secondary metabolite that dismantles type III injectisome by targeting the conserved HrcC protein within the secretion apparatus.more » « lessFree, publicly-accessible full text available March 31, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
ABSTRACT Potassium (K) is the second most abundant nutrient element in plants after nitrogen (N), and has been shown to limit aboveground production in some contexts. However, the role of N and phosphorus (P) availability in mediating K limitation in terrestrial production remains poorly understood; and it is unknown whether K also limits belowground carbon (C) stocks, which contain at least three times more C than those aboveground stocks. By synthesizing 779 global paired observations (528, 125, and 126 for aboveground productivity, root biomass, and soil organic C [SOC], respectively), we found that K addition significantly increased aboveground production and SOC by 8% and 5%, respectively, but did not significantly affect root biomass (+9%). Moreover, enhanced N and/or P availability (through N and P addition) did not further amplify the positive effect of K on aboveground productivity. In other words, K had a positive effect on aboveground productivity only when N and/or P were limiting, indicating that K could somehow substitute for N or P when they were limiting. Climate variables mostly explained the variations in K effects; specifically, stronger positive responses of aboveground productivity and SOC to K were found in regions with high mean annual temperature and wetness. Our results suggest that K addition enhances C sequestration by increasing both aboveground productivity and SOC, contributing to climate mitigation, but the positive effects of K on terrestrial C stocks are not further amplified when N and P limitations are alleviated.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
An official website of the United States government
